ETMAG CORONALECTURE 8 Subspaces Linear independence Bases, dimension May 11, 12:15 **Examples.** (of subspaces or not-subspaces) Decide which subsets are subspaces:

1.
$$\{(x, y) \in \mathbb{R}^2 : xy \ge 0\}$$
 in \mathbb{R}^2 over \mathbb{R}

- 2. $\{(x, y) \in \mathbb{R}^2 : x + y \ge 0\}$ in \mathbb{R}^2 over \mathbb{R}
- 3. $\{(x, y) \in \mathbb{R}^2 : x = 5y\}$ in \mathbb{R}^2 over \mathbb{R}
- 4. $\{(x, y) \in \mathbb{R}^2 : x^2 = y\}$ in \mathbb{R}^2 over \mathbb{R}
- 5. $\{(x, y, z) \in \mathbb{R}^3 : x + y 3z = 1\}$ in \mathbb{R}^3 over \mathbb{R}
- 6. $\{\{a, b\}, \{a\}, \emptyset\}$ in $2^{\{a, b, c\}}$ over \mathbb{Z}_2

Definition

Let V be a vector space over a field K and let $a_1, \ldots, a_n \in K$ and $v_1, \ldots, v_n \in V$. The vector $a_1v_1 + \cdots + a_nv_n$ is called the linear combination of vectors v_1, \ldots, v_n with coefficients a_1, \ldots, a_n .

A common problem in linear algebra is to decide whether a vector is or is not a linear combination of other vectors.

Example.

You decide to blow-up Polytechnica. You find a recipe on the dark net which says you need a mixture of 30% of ingredient A, 50% of B and 20% of C. A leading branch of toothpaste T consists of 10, 60 and 30 percent of those, a scouring powder S has 5, 80 and 15 and a washing machine powder P has 25, 50 and 25. Can you mix your explosive using those?

In the language of vectors we are asking if there exist coefficients *t*, *s*, *p* such that

(30,50,20) = t(10,60,30) + s(5,80,15) + p(25,50,25)

i.e. (30,50,20) is a linear combination of (10,60,30), (5,80,15) and (25,50,25).

In this example we must also require the coefficients to be ≥ 0 .

Comparing the left to the right hand side of

$$(30,50,20) = t(10,60,30) + s(5,80,15) + p(25,50,25)$$
component by component we clearly get a system of equations

$$\begin{cases}
30 = 10t + 5s + 25p \\
50 = 60t + 80s + 50p \\
20 = 30t + 15s + 25p
\end{cases}$$

We can word it slightly differently: does our vector (30,50,20) belong to the set of all possible linear combinations of (10,60,30), (5,80,15) and (25,50,25)

Comparing the left to the right hand side of (30,50,20) = t(10,60,30) + s(5,80,15) + p(25,50,25)component by component we clearly get a system of equations $\begin{cases}
30 = 10t + 5s + 25p \\
50 = 60t + 80s + 50p \\
20 = 30t + 15s + 25p
\end{cases}$

We can word it slightly differently: does our vector (30,50,20) belong to the set of all possible linear combinations of (10,60,30), (5,80,15) and (25,50,25).

Before we switch to the other presentation – no, we cannot blowup Polytechnica. We cannot get 30% of A in our mixture because in each of the household chemicals the content of A is below 30%.

Now we switch to slide #16 of the other presentation.

In the language of vectors we are asking if there exist coefficients *t*, *s*, *p* such that

```
(30,50,20) = t(10,60,30) + s(5,80,15) + p(25,50,25)
```

We switch to the old presentation for linear independence of sets of vectors, bases and dimension.

Definition. (alternate definition od *span*) Let $S \subseteq V$ (a sub<u>set</u>, not necessarily a sub<u>space</u>). Then by *span*(*S*) we denote the smallest subspace of V containing S.

We call span(S) the *subspace spanned by S*.

One advantage of this definition over the other one is it covers the case $S = \emptyset$ without branching.

Fact.

Let V(S) denote the set of all subspaces of V containing S. Then

$$span(S) = \bigcap_{T \in V(S)} T$$

Proof. It is enough to show that intersection of a collection of subspaces is a subspace of V and that is easy. (All contain Θ so intersection does, too, etc.)

Theorem.

The set $S = \{v_1, v_2, \dots, v_n\}$ is linearly independent iff no vector from S is a linear combination of the others.

<u>Proof.</u> (\Rightarrow) Suppose one of the vectors is a linear combination of the others. Without loss of generality we may assume that v_n is the one, i.e. $v_n = a_1v_1 + a_2v_2 + \dots + a_{n-1}v_{n-1}$. Then we may write $\Theta = a_1v_1 + a_2v_2 + \dots + a_{n-1}v_{n-1} + (-1)v_n$. Since $-1 \neq 0$ the set $\{v_1, v_2, \dots, v_n\}$ is linearly dependent.

(\Leftarrow) Suppose now that { v_1, v_2, \ldots, v_n } is linearly dependent, i.e. there exist coefficients a_1, a_2, \ldots, a_n , not all of them zeroes, such that $\Theta = a_1 v_1 + a_2 v_2 + \ldots a_n v_n$. Again, without losing generality, we may assume that $a_n \neq 0$ (we can always renumber the vectors so that the one with nonzero coefficient is the last). Since nonzero scalars are invertible, we have $v_n = (-a_1 a_n^{-1})v_1 + (-a_2 a_n^{-1})v_2 + \ldots$ $+(-a_{n-1} a_n^{-1})v_{n-1}$